New Type of Matrix Splitting and Its Applications
نویسندگان
چکیده
One possible type of the matrix splitting is introduced. Using this matrix splitting, we introduce a few properties and representations of generalized inverses as well as iterative methods for computing various solutions of singular linear systems. This matrix splitting is a generalization of the known index splitting from [13] and a proper splitting from [4]. Using a generalization of the condition number and introduced representations of generalized inverses, we obtain several norm estimates.
منابع مشابه
Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملA New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملOn Conditional Applications of Matrix Variate Normal Distribution
In this paper, by conditioning on the matrix variate normal distribution (MVND) the construction of the matrix t-type family is considered, thus providing a new perspective of this family. Some important statistical characteristics are given. The presented t-type family is an extension to the work of Dickey [8]. A Bayes estimator for the column covariance matrix &Sigma of MVND is derived under ...
متن کاملON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کامل